

HA-003-001543

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

May / June - 2017 Statistics: S - 502 (Mathematical Statistics) (New Course)

Faculty Code : 003 Subject Code : 001543

Time	e: 2	1/2 Hours] [Total Marks : 70
Inst	ructi	 (a) All the questions are compulsory. (b) Students can use their own scientific calculator (c) Students can demand log tubal on request.
1	Filli	ng the blanks and short questions.
	(1)	is a characteristic function of Binomial
		distribution.
	(2)	is a characteristic function of Chi-square
		distribution.
	(3)	is a characteristic function of Geometric
		distribution.
	(4)	is a moment generating function of Standard
		Normal distribution.
	(5)	is a moment generating function of $\gamma(p)$.
	(6)	For Normal distribution $\mu_{2n} = \underline{\hspace{1cm}}$
	(7)	Measured of Kurtosis coefficient for Normal distribution
		are and
	(8)	If x follows Gama distribution with parameter p then
		$\mu_4 = k_4 + 3k_2^2$ is
	(9)	If two independent variates $X_1 \sim N(\mu_1, \sigma_1^2)$ and
		$X_2 \sim N(\mu_2, \sigma_2^2)$ then $X_1 + X_2$ is distributed as
	(10)	If two independent variates $X_1 \sim \gamma(n_1)$ and $X_2 \sim \gamma(n_2)$
		then $\frac{X_1}{X_1 + X_2}$ is distributed as
HA-0	003-00	[Contd [Contd

- (12) Weibull distribution has application in _____
- (13) If two independent variates $X_1 \sim \Lambda\left(\mu_1, \sigma_1^2\right)$ and $X_2 \sim \Lambda\left(\mu_2, \sigma_2^2\right)$ then X_1, X_2 is distributed as _____.
- (14) The range of multiple correlation coefficient R is
- (15) The range of partial regression coefficient is ______.
- (16) Define Caush's distribution.
- (17) Define Log Normal with $\log_e x$ distribution.
- (18) Write mean and variance of Gama distribution with parameter (α, p) .
- (19) Write mean and variance of Weibul distribution.
- (20) Write mean and variance of Laplace (double) exponential distribution.
- 2 (A) Write the answer any three
 - (1) Obtain Harmonic mean of Beta distribution of first kind.
 - (2) If $u = \frac{x-a}{h}$, a and h being constants then $\emptyset_u(t) = e^{(-iat/h)} \emptyset_x(t/h)$
 - (3) Define Weibul distribution.
 - (4) Define truncated distribution.
 - (5) Usual notation of multiple correlation and multiple regression, prove that if $r_{12} = r_{23} = r_{31} = \rho$ then $r_{12.3} = \frac{\rho}{1+\rho}$
 - (6) Prove that $b_{12.3} = \frac{b_{12} b_{13} b_{23}}{1 b_{13} b_{23}}$
 - (B) Write the answer any three
 - (1) Prove that $\mu'_r = (-i)^r \left[\frac{d^r}{dt^r} \varnothing_x(t) \right]_{t=0}$
 - (2) Obtain Probability density function for the characteristic function $\varnothing_x(t) = (q + pe^{it})^n$

9

6

- (3) Define Exponential distribution and obtain its MGF. From MGF obtain its mean and variance.
- (4) Define truncated Poisson distribution and also obtain its mean and variance.
- (5) Usual notation of multiple correlation and multiple regression, prove that

$$R_{1.23}^2 = b_{12.3} r_{12} \frac{\sigma_2}{\sigma_1} + b_{13.2} r_{13} \frac{\sigma_3}{\sigma_1}$$

- (6) Usual notation of multiple correlation and multiple regression, prove that $\sigma_{1.23}^2 = \sigma_1^2 \left(1 r_{12}^2\right) \left(1 r_{13.2}^2\right)$
- (C) Write the answer any two

10

- (1) State and Prove that Chebchev's inequality.
- (2) Drive t-distribution.
- (3) If x and y are independent X^2 variates with n_1 and n_2 degree of freedom respectively, then obtain distribution of $\frac{x}{x+y}$ and x+y
- (4) Obtain marginal distribution of y for Bi-variate distribution.
- (5) Usual notation of multiple correlation and multiple regression, prove the $R_{1.23}^2 = \frac{r_{12}^2 + r_{13}^2 2r_{12}r_{23}r_{13}}{1 r_{23}^2}$
- 3 (A) Write the answer any three

6

- (1) Define Beta-I and Beta-II distribution.
- (2) Obtain characteristic function of Poisson distribution with parameter λ
- (3) Define Bivariate normal distribution.
- (4) Usual notion of multiple correlation and multiple regression, prove that $\sum X_{1.2}X_{3.12} = 0$
- (5) Prove that $\sigma_{3.12}^2 = \frac{\sigma_3^2 \left(1 r_{12}^2 r_{23}^2 r_{13}^2 + 2r_{12}r_{23}r_{13}\right)}{\left(1 r_{12}^2\right)}$
- (6) In trivariate distribution it is found that $\sigma_1 = 2$, $\sigma_2 = \sigma_3 = 3$, $r_{12} = 0.7$, $r_{23} = r_{31} = 0.5$ Find (i) $b_{12,3}$ (ii) $\sigma_{1,23}$

(B) Write the answer any three

- 1) Prove that $\mu_r = (-i)^r \left[\frac{d^r}{dt^r} \varnothing_u(t) \right]_{t=0}$; where $u = x \mu$
- (2) Obtain MGF of Normal distribution.
- (3) Obtain mean and variance of Uniform Distribution.
- (4) Define truncated Binomial distribution and also obtain its mean and variance.
- (5) Usual notation of multiple correlation and multiple regression, prove that If $r_{12} = r_{23} = r_{31} = r$ then

$$R_{1.23} = R_{2.31} = R_{3.12} = \frac{\sqrt{2r}}{\sqrt{1+r}}$$

(6) Usual notation of multiple correlation and multiple regression, prove that

$$r_{12.3} \frac{\sigma_{1.3}}{\sigma_{2.3}} = -\frac{\sigma_1}{\sigma_2} \left[\frac{r_{23}r_{31} - r_{12}}{1 - r_{23}^2} \right] = b_{12.3}$$

(C) Write the answer any two

(1) Obtain MGF of Gamma distribution with parameters α and p. Also show that $3\beta_1 - 2\beta_2 + 6 = 0$.

- (2) Drive Normal distribution.
- (3) Drive F-distribution.
- (4) Obtain conditional distribution of x when y is given for Bi–variate distribution.
- (5) Usual notation of multiple correlation and multiple regression, prove that

$$r_{12.3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}}$$

9

10